

2010 NDIA IMEM Munich

The Army Burn-to-Violent Reaction (ABVR) Test: A Sub-scale Impact Screening Tool

Approved for public release; distribution unlimited. Review completed by the AMRDEC Public Affairs Office 20 Sep 2010; FN4856.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

12 October 2010

Jamie B. Neidert, PhD

Chief Scientist, Energetics

Aviation and Missile Research, Development and Engineering Center

UNCLASSIFIED

Yourfilename.pp

Develop sub-scale tests to understand and predict reaction violence for screening and early sensitivity indications during formulation activities.

- Based on previous work by Steven Finnegan at China Lake in the 1980s
 - Update testing to incorporate current technology
 - Better understand the phenomena and mechanisms for reactivity
 - Low cost testing capabilities

RNFCOM

Approach

- > Test Article represents a 2-D Analog of a Rocket Motor
- Projectile Impact Range 3000-6000 ft/sec
- Instrumentation

RDECOM

- Open Air Pressure Data
- Projectile Velocity
- Propellant Debris Velocity
- High Speed Video
- > Primary variables
- Propellant formulation
 - Class 1.3 HPP and Class 1.1 MS
- Case material
 - Steel, Aluminum, and Composite
- Air Gap & Web Thickness

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ABVR Test Set-Up

High Performance Propellant

UNCLASSIFIED

Data shows a less violent reaction when using sphere's. Importance: Projectile geometry.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

UNCLASSIFIED

RDECOM

HPP Video

Yourfilename.ppt

STANAG Fragment at 3000 fps

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

HPP Video

STANAG Fragment at 6000 fps

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Minimum Signature Propellant Class 1.1

RDECOM

= No Sustained Burning
= Violent Reaction/Partial Detonation

MS Propellant Additional Study:

•Aluminum Case material was compared to Composite Case material

•Composite was found to have a higher threshold

MS Propellant produced similar results to HPP study: •Increasing violence with increasing velocities •Violent reactions related to debris cloud dispersal

Recovered MS Propellant Below Detonation Threshold Similar entrance/exit patterns observed in low velocity HPP tests

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

UNCLASSIFIED

MS Video

STANAG Fragment at 3900 fps MS propellant bonded to Composite Plate

STANAG Fragment at 3900 fps MS propellant bonded to Aluminum Plate

STANAG Fragment at 3800 fps MS propellant bonded to Composite Plate

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

UNCLASSIFIED

ABVR Conclusions

Yourfilename.pp

- Fragments produce a greater violence than spheres.
 - Comparisons of high speed video, pressure data, and calculated TNT eq. support this conclusion.
 - Debris cloud is noticeably larger in fragment testing.
- Violence of the reaction is dependent of the projectile velocity. The following increase by increasing Projectile Velocity:
 - Propellant Debris Geometry
 - Debris Cloud Velocities
 - TNT Eq.

RDECON

- Vertical impact surface required for reaction to occur in all tests excluding one.
 - All HPP Propellants tested at 6000 ft/sec and below
 - All but one MS Propellants tested at 4000 ft/sec and below
- Composite case has a higher threshold velocity than the aluminum case for 1.1 propellant.
 - Propellant spall is greater in the aluminum case.
 - Both increase in violence as projectile velocity increases.
- Threshold velocities were determined for HPP and MS propellants.
 - HPP threshold ~ 3550 to 4200 ft/sec
 - MS threshold ~ 3000 to 4000 ft/sec

RDECOM

UNCLASSIFIED

Work Status

Current:

- Effects with no case
- Study Web Thickness/Air Gap Ratio Will it become less violent as the air gap decreases?

Future:

- > Modify test article design to better represent motor
 - > 2D Cylinders
- > Investigate other case materials
 - Barriers (internal and external)
- > Shock mitigation
- Compare propellants directly

Collaborators

- AMRDEC Co-Authors
 - Jessica Stanfield
 - William Chew
 - Joey Reed
 - Pam Johns
 - William Thomas
- AMCOM Safety: Pat Vittitow
- DOE
 - LANL: Eric Mas, Thomas Mason
 - LLNL: Bruce Watkins, Rose McCallen, Keo Springer
 - SNL: Paul Butler, Eric Harstad